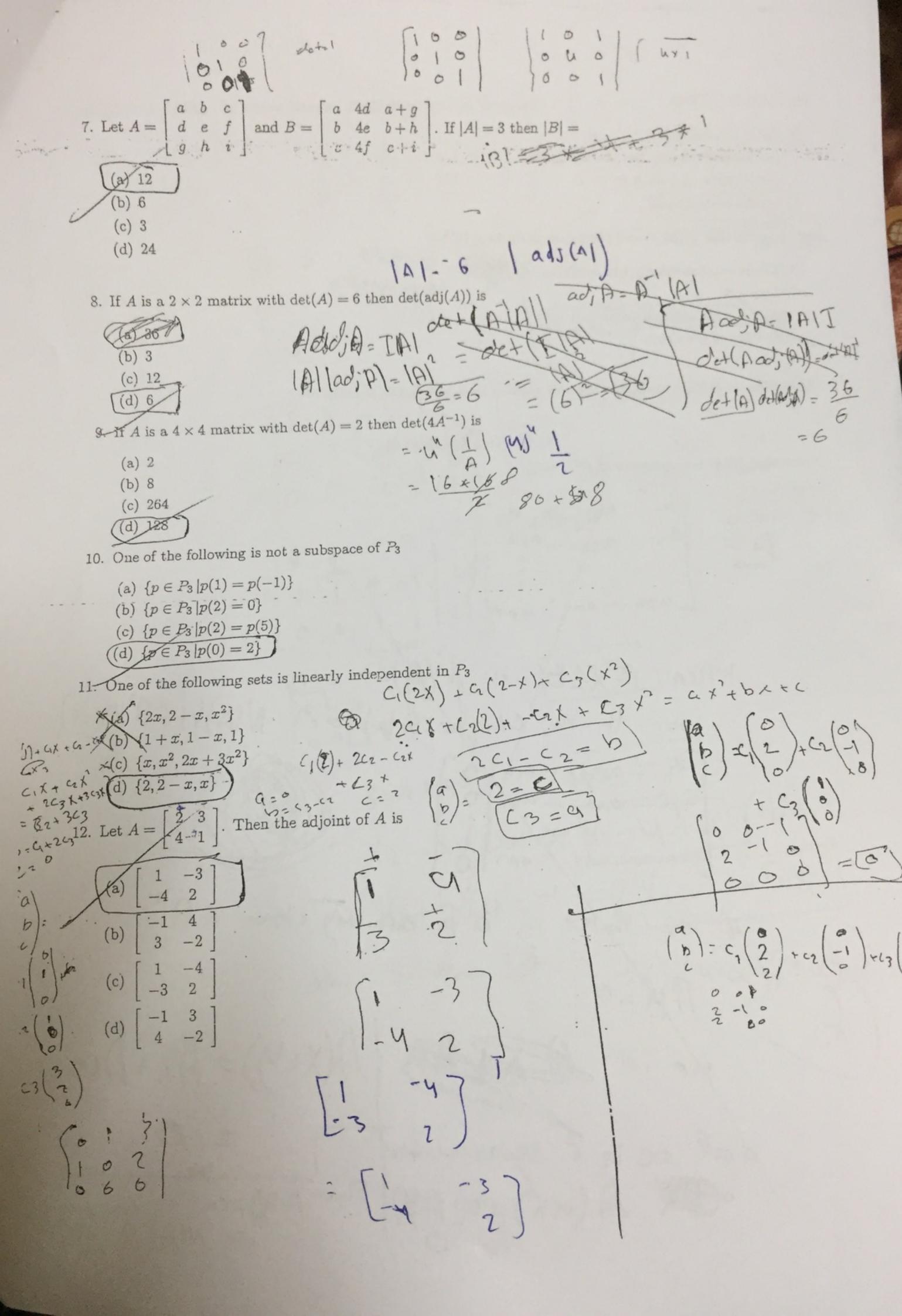
MATH 234
MIDTERM EXAM
Instructor: Al ALD ALD Student Number: Student Number:
Instructor: Abol - Al Rahem Section: S. W. W. O. 10
Question 1. (30%) Answer by true or false:
If A is nonsingular then A^T is nonsingular.
Span $\{1+x,1-x\}$ is a subspace of P_2
3. Any singular matrix can be written as a product of elementary matrices. C+C1+C2-C1+
4. If A is row equivalent to B then both A and B are nonsingular.
5. If $span\{x_1, x_2, x_3\} = R^3$ then $span\{x_1, x_2, x_3, x\} = R^3$ for any $x \in R^3$.
6. If A is singular then $adj(A)$ is singular.
7. If A is $n \times n$ then $ A^n = A ^n$
8. Suppose that $\{f_1, f_2, \ldots, f_n\} \subseteq C^{n-1}[a, b]$. If $W[f_1, \ldots, f_n] = 0$, where W denotes the Wronskien,
9 Every diagonal matrix is nonsingular. Every diagonal matrix is nonsingular.
10. $ AB = A B $ only when A or B is nonsingular.
11. If E_1 and E_2 are elementary $n \times n$ matrices, then E_1E_2 is elementary.
12. $ABC = A(BC)$ for all matrices A, B, and C when multiplication is allowed.
If A and B are $n \times n$ matrices and A is singular, then AB is singular.
If A is 3×3 then $ -2A = -2 A $. If $A = 3 \times 3$ then $ -2A = -2 A $. If $A = 3 \times 3$ then $ -2A = -2 A $. If $A = 3 \times 3$ then $ -2A = -2 A $. If $A = 3 \times 3$ then $ -2A = -2 A $.
15. The A and B are symmetric $n \times n$ matrices then AB is symmetric. $H = + 13 = 15$ (AB) $T = 13$ $P = 15$
15. If A is symmetric and nonsingular then A^{-1} is symmetric. (AB) $\overline{} = B^{T} \rho^{T} = B \rho^{T}$ (BA) $\overline{} = B^{T} \rho^{T} = B^{T} \rho^{T} = \rho^{T}$
17. If S is a set of vectors that are linearly independent in a vector space V then any nonempty
subset of S is linearly independent
18. $\int \int \int \int S ds$ is a set of vectors that are linearly independent in a vector space V then any subset
of V containing S is linearly independent
19. If S is a subspace of V then any set of vectors in S that spans S also spans V .
20. A is a singular $n \times n$ matrix, then $Ax = b$ has infinitely many solutions for every vector $b \in \mathbb{R}^n$

5713 00, in con (15/11) -1


Question 2 (42%) Circle the most correct answer:
 (a) The vectors {v₁ + v₂, v₁ + v₃, v₂ + v₃} are linearly independent in V (b) The vectors {v₁, v₂, v₁ ± v₂ + v₃} are linearly independent in V (c) The vectors {v₁, v₂, v₁ ± v₂ + v₃} are linearly independent in V (d) All of the above
2. One of the following is a subspace of $R^{n\times n}$
* (a) All singular $n \times n$ matrices .
All upper triangular $n \times n$ matrices
(c) All nonsingular $n \times n$ matrices
(d) All triangular $n \times n$ matrices)
3. Let $A = \begin{bmatrix} a & 1 & 1 \\ a & 2 & 0 \\ -2 & 2 & a \end{bmatrix}$. Then A is nonsingular if and only if $\begin{bmatrix} a & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 2 & 2 & a \end{bmatrix}$ (a) $a \neq 2$ (b) a is any real number (c) $a = -2$ (d) $a = \pm 2$ $\begin{bmatrix} a & 1 & 1 \\ a & 2 & 0 \\ -2 & 2 & a \end{bmatrix}$ Then A is nonsingular if and only if $\begin{bmatrix} a & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 2 & 2 & a \end{bmatrix}$ $\begin{bmatrix} a & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 2 & 2 & a \end{bmatrix}$ $\begin{bmatrix} a & 1 & 1 \\ 0 & 1 & -1 \\ 0 & 2 & 2 & a \end{bmatrix}$ $\begin{bmatrix} a & 1 & 1 \\ 0 & 1 & 2 \\ a & 2 & 3 \\ a & 3 & 4 \end{bmatrix}$ $\begin{bmatrix} a & 1 & 1 \\ 0 & 2 & 2 \\ a & 4 & 2 \\ $
4. The set of vectors $\{(1,a)^T, (b,1)^T\}$ is a spanning set for R^2 if (a) $a \neq 1$ and $b \neq 1$ (b) $ab \neq 1$ (c) $ab = 1$
$(d) a \neq b$ $3 \times 3 \cdot \cdot \cdot \cdot 3 \cdot 1$
5. Let A be a 3×3 matrix and suppose that $A \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. Then
Ax = 6 has infinitely many solutions
(b) $Ax = (1,0,0)^T$ has infinitely many solutions
· (c) A is nonsingular
× (d) None of the above

6. Suppose that a vector space V contains n linearly independent vectors, then

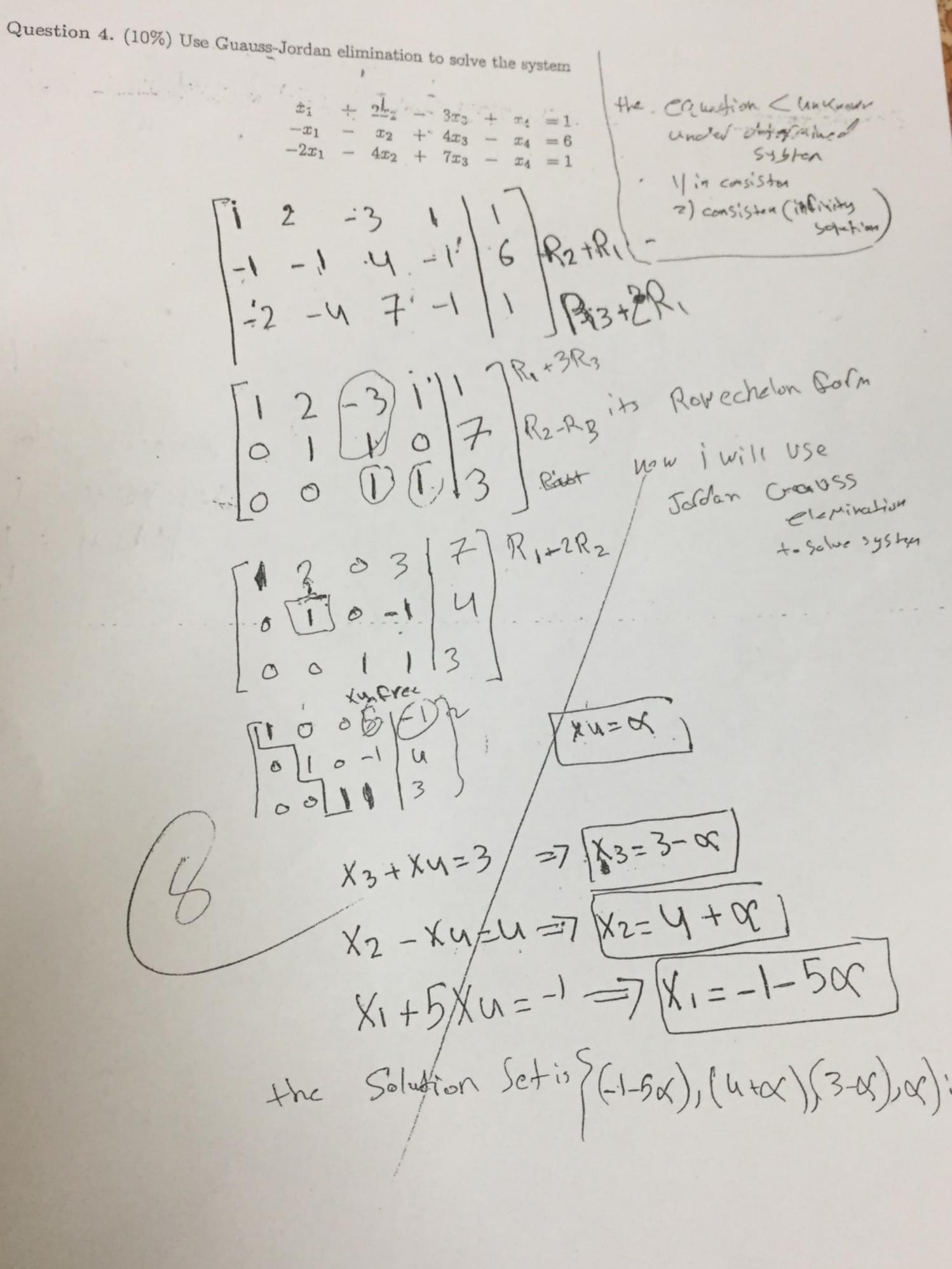
(a) Any set containing more than n vectors is linearly dependent

If a set S spans V then S must contain at least n vectors.

- (c) Any n vectors in V are linearly independent
- (d) If a set S spans V then S must contain at most n vectors

13. If $det(A) \neq 0$ then (a) A is nonsingular (b) Ax = 0 has only the trivial solution (c) A is row equivalent to I (d) All of the above) 14. Suppose that y and z are both solutions to Ax = 0 then (a) Ax = 0 has exactly two solutions / (b) y=/2 (c) y + z is a solution to Ax = 0(d) None of the above Question 3. (10%) Recall that the null space of an $m \times n$ matrix A is the set $N(A) = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} = 0 \}.$ Prove that N(A) is a subspace of \mathbb{R}^n . A = \[\alpha_{21} \alpha_{22} \cdots \alpha_{21} \\ \text{ann} \cdots \ when AX=0 is NA ther it has chique solution NA) {1 ER" INX = 0 if we take y ix partitlery elemon ERM

Ay=0


And ox is a Scalewred (newtor)

A (x+y) = Ax+Dy

Since Ax=0

Subspace

so N(A) @ inRh

Question 5.(8%) let A be an $n \times n$ nonsingular matrix, and suppose that |A| = 2. Find $|A^{-1}| + \operatorname{adj}(A)|$. ad5 (6) + ad5 + 11 18 non size wor (3) | adTA1 a A to az a) = Blet A 7 لف الوقي